174 research outputs found

    Genomic Classifier Augments the Role of Pathological Features in Identifying Optimal Candidates for Adjuvant Radiation Therapy in Patients With Prostate Cancer: Development and Internal Validation of a Multivariable Prognostic Model.

    Get PDF
    Purpose Despite documented oncologic benefit, use of postoperative adjuvant radiotherapy (aRT) in patients with prostate cancer is still limited in the United States. We aimed to develop and internally validate a risk-stratification tool incorporating the Decipher score, along with routinely available clinicopathologic features, to identify patients who would benefit the most from aRT. Patient and Methods Our cohort included 512 patients with prostate cancer treated with radical prostatectomy at one of four US academic centers between 1990 and 2010. All patients had ≄ pT3a disease, positive surgical margins, and/or pathologic lymph node invasion. Multivariable Cox regression analysis tested the relationship between available predictors (including Decipher score) and clinical recurrence (CR), which were then used to develop a novel risk-stratification tool. Our study adhered to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for development of prognostic models. Results Overall, 21.9% of patients received aRT. Median follow-up in censored patients was 8.3 years. The 10-year CR rate was 4.9% vs. 17.4% in patients treated with aRT versus initial observation ( P \u3c .001). Pathologic T3b/T4 stage, Gleason score 8-10, lymph node invasion, and Decipher score \u3e 0.6 were independent predictors of CR (all P \u3c .01). The cumulative number of risk factors was 0, 1, 2, and 3 to 4 in 46.5%, 28.9%, 17.2%, and 7.4% of patients, respectively. aRT was associated with decreased CR rate in patients with two or more risk factors (10-year CR rate 10.1% in aRT v 42.1% in initial observation; P = .012), but not in those with fewer than two risk factors ( P = .18). Conclusion Using the new model to indicate aRT might reduce overtreatment, decrease unnecessary adverse effects, and reduce risk of CR in the subset of patients (approximately 25% of all patients with aggressive pathologic disease in our cohort) who benefit from this therapy

    Changes in prostate‐specific antigen at the time of prostate cancer diagnosis after Medicaid expansion in young men

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155914/1/cncr32930_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155914/2/cncr32930.pd

    Impact of the SPOP Mutant Subtype on the Interpretation of Clinical Parameters in Prostate Cancer.

    Get PDF
    Purpose: Molecular characterization of prostate cancer, including The Cancer Genome Atlas, has revealed distinct subtypes with underlying genomic alterations. One of these core subtypes, SPOP (speckle-type POZ protein) mutant prostate cancer, has previously only been identifiable via DNA sequencing, which has made the impact on prognosis and routinely used risk stratification parameters unclear. Methods: We have developed a novel gene expression signature, classifier (Subclass Predictor Based on Transcriptional Data), and decision tree to predict the SPOP mutant subclass from RNA gene expression data and classify common prostate cancer molecular subtypes. We then validated and further interrogated the association of prostate cancer molecular subtypes with pathologic and clinical outcomes in retrospective and prospective cohorts of 8,158 patients. Results: The subclass predictor based on transcriptional data model showed high sensitivity and specificity in multiple cohorts across both RNA sequencing and microarray gene expression platforms. We predicted approximately 8% to 9% of cases to be SPOP mutant from both retrospective and prospective cohorts. We found that the SPOP mutant subclass was associated with lower frequency of positive margins, extraprostatic extension, and seminal vesicle invasion at prostatectomy; however, SPOP mutant cancers were associated with higher pretreatment serum prostate-specific antigen (PSA). The association between SPOP mutant status and higher PSA level was validated in three independent cohorts. Despite high pretreatment PSA, the SPOP mutant subtype was associated with a favorable prognosis with improved metastasis-free survival, particularly in patients with high-risk preoperative PSA levels. Conclusion: Using a novel gene expression model and a decision tree algorithm to define prostate cancer molecular subclasses, we found that the SPOP mutant subclass is associated with higher preoperative PSA, less adverse pathologic features, and favorable prognosis. These findings suggest a paradigm in which the interpretation of common risk stratification parameters, particularly PSA, may be influenced by the underlying molecular subtype of prostate cancer

    TOP2A and EZH2 Provide Early Detection of an Aggressive Prostate Cancer Subgroup.

    Get PDF
    Purpose: Current clinical parameters do not stratify indolent from aggressive prostate cancer. Aggressive prostate cancer, defined by the progression from localized disease to metastasis, is responsible for the majority of prostate cancer–associated mortality. Recent gene expression profiling has proven successful in predicting the outcome of prostate cancer patients; however, they have yet to provide targeted therapy approaches that could inhibit a patient\u27s progression to metastatic disease. Experimental Design: We have interrogated a total of seven primary prostate cancer cohorts (n = 1,900), two metastatic castration-resistant prostate cancer datasets (n = 293), and one prospective cohort (n = 1,385) to assess the impact of TOP2A and EZH2 expression on prostate cancer cellular program and patient outcomes. We also performed IHC staining for TOP2A and EZH2 in a cohort of primary prostate cancer patients (n = 89) with known outcome. Finally, we explored the therapeutic potential of a combination therapy targeting both TOP2A and EZH2 using novel prostate cancer–derived murine cell lines. Results: We demonstrate by genome-wide analysis of independent primary and metastatic prostate cancer datasets that concurrent TOP2A and EZH2 mRNA and protein upregulation selected for a subgroup of primary and metastatic patients with more aggressive disease and notable overlap of genes involved in mitotic regulation. Importantly, TOP2A and EZH2 in prostate cancer cells act as key driving oncogenes, a fact highlighted by sensitivity to combination-targeted therapy. Conclusions: Overall, our data support further assessment of TOP2A and EZH2 as biomarkers for early identification of patients with increased metastatic potential that may benefit from adjuvant or neoadjuvant targeted therapy approaches. ©2017 AACR

    Individual Patient-Level Meta-Analysis of the Performance of the Decipher Genomic Classifier in High-Risk Men After Prostatectomy to Predict Development of Metastatic Disease.

    Get PDF
    Purpose To perform the first meta-analysis of the performance of the genomic classifier test, Decipher, in men with prostate cancer postprostatectomy. Methods MEDLINE, EMBASE, and the Decipher genomic resource information database were searched for published reports between 2011 and 2016 of men treated by prostatectomy that assessed the benefit of the Decipher test. Multivariable Cox proportional hazards models fit to individual patient data were performed; meta-analyses were conducted by pooling the study-specific hazard ratios (HRs) using random-effects modeling. Extent of heterogeneity between studies was determined with the I(2) test. Results Five studies (975 total patients, and 855 patients with individual patient-level data) were eligible for analysis, with a median follow-up of 8 years. Of the total cohort, 60.9%, 22.6%, and 16.5% of patients were classified by Decipher as low, intermediate, and high risk, respectively. The 10-year cumulative incidence metastases rates were 5.5%, 15.0%, and 26.7% ( P \u3c .001), respectively, for the three risk classifications. Pooling the study-specific Decipher HRs across the five studies resulted in an HR of 1.52 (95% CI, 1.39 to 1.67; I(2) = 0%) per 0.1 unit. In multivariable analysis of individual patient data, adjusting for clinicopathologic variables, Decipher remained a statistically significant predictor of metastasis (HR, 1.30; 95% CI, 1.14 to 1.47; P \u3c .001) per 0.1 unit. The C-index for 10-year distant metastasis of the clinical model alone was 0.76; this increased to 0.81 with inclusion of Decipher. Conclusion The genomic classifier test, Decipher, can independently improve prognostication of patients postprostatectomy, as well as within nearly all clinicopathologic, demographic, and treatment subgroups. Future study of how to best incorporate genomic testing in clinical decision-making and subsequent treatment recommendations is warranted

    The Lectin-like Domain of Thrombomodulin Confers Protection from Neutrophil-mediated Tissue Damage by Suppressing Adhesion Molecule Expression via Nuclear Factor ÎșB and Mitogen-activated Protein Kinase Pathways

    Get PDF
    Thrombomodulin (TM) is a vascular endothelial cell (EC) receptor that is a cofactor for thrombin-mediated activation of the anticoagulant protein C. The extracellular NH2-terminal domain of TM has homology to C-type lectins that are involved in immune regulation. Using transgenic mice that lack this structure (TMLeD/LeD), we show that the lectin-like domain of TM interferes with polymorphonuclear leukocyte (PMN) adhesion to ECs by intercellular adhesion molecule 1–dependent and –independent pathways through the suppression of extracellular signal–regulated kinase (ERK)1/2 activation. TMLeD/LeD mice have reduced survival after endotoxin exposure, accumulate more PMNs in their lungs, and develop larger infarcts after myocardial ischemia/reperfusion. The recombinant lectin-like domain of TM suppresses PMN adhesion to ECs, diminishes cytokine-induced increase in nuclear factor ÎșB and activation of ERK1/2, and rescues ECs from serum starvation, findings that may explain why plasma levels of soluble TM are inversely correlated with cardiovascular disease. These data suggest that TM has antiinflammatory properties in addition to its role in coagulation and fibrinolysis

    Characterization of 1577 primary prostate cancers reveals novel biological and clinicopathologic insights into molecular subtypes.

    Get PDF
    BACKGROUND: Prostate cancer (PCa) molecular subtypes have been defined by essentially mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and SPINK1 overexpression. Clinical assessment may aid in disease stratification, complementing available prognostic tests. OBJECTIVE: To determine the analytical validity and clinicopatholgic associations of microarray-based molecular subtyping. DESIGN, SETTING, AND PARTICIPANTS: We analyzed Affymetrix GeneChip expression profiles for 1577 patients from eight radical prostatectomy cohorts, including 1351 cases assessed using the Decipher prognostic assay (GenomeDx Biosciences, San Diego, CA, USA) performed in a laboratory with Clinical Laboratory Improvements Amendment certification. A microarray-based (m-) random forest ERG classification model was trained and validated. Outlier expression analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS(+)) or SPINK1 overexpression (SPINK1(+)). OUTCOME MEASUREMENTS: Associations with clinical features and outcomes by multivariate logistic regression analysis and receiver operating curves. RESULTS AND LIMITATIONS: The m-ERG classifier showed 95% accuracy in an independent validation subset (155 samples). Across cohorts, 45% of PCas were classified as m-ERG(+), 9% as m-ETS(+), 8% as m-SPINK1(+), and 38% as triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Gene expression profiling supports three underlying molecularly defined groups: m-ERG(+), m-ETS(+), and m-SPINK1(+)/triple negative. On multivariate analysis, m-ERG(+) tumors were associated with lower preoperative serum prostate-specific antigen and Gleason scores, but greater extraprostatic extension (p CONCLUSIONS: A clinically available prognostic test (Decipher) can also assess PCa molecular subtypes, obviating the need for additional testing. Clinicopathologic differences were found among subtypes based on global expression patterns. PATIENT SUMMARY: Molecular subtyping of prostate cancer can be achieved using extra data generated from a clinical-grade, genome-wide expression-profiling prognostic assay (Decipher). Transcriptomic and clinical analysis support three distinct molecular subtypes: (1) m-ERG(+), (2) m-ETS(+), and (3) m-SPINK1(+)/triple negative (m-ERG(-)/m-ETS(-)/m-SPINK1(-)). Incorporation of subtyping into a clinically available assay may facilitate additional applications beyond routine prognosis
    • 

    corecore